
 

Analysis of a simple object oriented simulation of STDP in 
memristor synapse arrays for potential use in event-driven 

contrastive divergence 

 

 Vladimir Jovanovic
 

Vy A. Vo 1 
 Dept. of Neurosciences Dept. of Neurosciences 2 
 U.C. San Diego U.C. San Diego 3 
 La Jolla, CA 92093 La Jolla, CA 92093 4 
 vjovanovic@ucsd.edu vav001@ucsd.edu   5 

 

Abstract 6 

Memristors are electrical devices whose conductance can be modulated by the 7 

charge and voltage flux through the two elements. Previous work has shown that 8 

memristors are good models of synapses, even reproducing learning behavior 9 

such as spike-time dependent plasticity (STDP). As such, there is widespread 10 

interest in understanding how large networks of memristor synapses might be 11 

trained to perform tasks such as visual perception or categorization (for review, 12 

see [1]). Our project aim is to simulate a small network of memristor synapses 13 

using an object-oriented programming language (Java) to create each element of 14 

the network, following previously published models. The main aim will be to 15 

demonstrate and characterize STDP behavior in our modeled cells. We expect 16 

that the results of this simulation will be similar to those reported by other 17 

groups [1]. The secondary aim will be to use this form of plasticity to train 18 

weights in a deep learning network. This aim will be mainly exploratory. 19 

 20 

1 Memristor networks and spike -time dependent plastici ty  21 

 22 

1 .1  M emri s to rs  a nd  neu ro mo rp hic  sy s t e ms  23 

Large-scale hardware simulations of neural systems may provide significant insight into 24 
emergent properties that arise from fairly simple biological principles. One promising 25 
neuromorphic system depends on an electrical device called a memristor. The conductance 26 
of a memristor can be modulated by the charge and voltage flux through the two elements of 27 
the device, which makes it an ideal candidate for a hardware implementation of an electrical 28 
synapse. Moreover, these devices demonstrate complex learning behavior similar to a 29 
characteristic property of real neural systems: spike-time dependent plasticity (STDP).  30 

STDP follows the basic principle of Hebbian learning, but further postulates that a pre -31 
synaptic spike which precedes a post-synaptic potential increases the strength of that 32 
synapse, whereas a post-synaptic potential which precedes a pre-synaptic spike decreases the 33 
strength of that synapse [2]-[3]. These recent demonstrations using small arrays of 34 
memristors indicate that networks of memristors may have similar properties to networks of 35 
cells. 36 

 37 

1 .2   Ev ent -ba sed  s i mula t io ns  o f  sp i ke - t i me  de pen dent  p la s t i c i ty  38 



Arrays of memristors with STDP behavior have successfully learned fairly complex stimulus 39 
properties. For example, Linares-Barranco and colleagues have shown that a simple array 40 
with a layer of excitatory synapses and a layer of inhibitory synapses connected to an output 41 
layer can inherit receptive field properties similar to those in the early visual system [4]. 42 
However, building such devices requires both resources and technical skill, and exploring 43 
the full extent of memristor array capabilities requires some degree of software simulation. 44 
Most simulations are currently dependent on ordinary differential equation (ODE) solvers 45 
which describe the behavior of each memristor at every time step of the simulation. Such 46 
ODE solvers are effective and fairly accurate, but generally limit the scale of the simulation, 47 
as these calculations are computationally expensive.  48 

Instead, event-based simulations of neural spiking only simulate relevant events, such as 49 
spikes and synaptic weight updating. Furthermore, since each cell or synapse is represented 50 
as an independent object, the state of the entire system does not need to be updated at every 51 
time step, further reducing the computational expense of the simulation.  52 

Our goal was to build an event-driven simulation of spiking cells in arrays of neurons. 53 
Instead of modeling individual electrical properties of the memristors, we directly 54 
implemented STDP in all synapse objects. Our final exploratory aim was to investigate how 55 
our simulation performed on basic learning tasks, such as categorization.  56 

 57 

2 Java s imulation with a graphical  interface  58 

 59 

2 .1  B a s ic  s t ruc ture  60 

We used the object-oriented language Java to build our simulation. Each neuron was 61 
represented as an individual object with properties such as voltage, threshold, and refractory 62 
period. A synapse class maintained information about which neurons were connec ted, 63 
whether the connection was excitatory or inhibitory, and how the weight of the synapse 64 
would be updated as its pre- or post-synaptic neuron fired. For simplicity, all spiking events 65 
were modeled as delta functions, and voltage updates were discrete step functions. Event-66 
timing was maintained by a priority queue.  67 

 68 

2 .2  Pro g ra m F lo w  69 

Three classes interacted with each other to create the graphical user interface (GUI). First, 70 
NetworkUI created the graphical components and maintained the interaction betwee n the 71 
user and the program by processing button clicks.  It also created the neural network that 72 
would be displayed to the user.  The actual network was stored in a separate class named 73 
NeuronSystem.  This class created the Neuron objects and connected them with Synapse 74 
objects as needed by NetworkUI.  It maintained the list of neurons and how to interact with 75 
them.  Finally, NetworkGraphDisplay was used to paint the network as needed. To cut 76 
processing time, only key aspects of the screen would be repainted. Whenever a neuron 77 
changed color due to an event, only the relevant portion of the screen that includes the 78 
changed neuron would be repainted. (Figure 1). 79 



 80 

Figure 1.  General outline of Java program for event-driven STDP. Each arrow indicates that 81 
the pointer contains an object of the pointed class (e.g. NetworkUI has an instance of 82 

NetworkSystem). Not shown: NEventQ that demonstrates how the event queue behaves.  83 

 84 

2 .3  Neura l  Ev ent  Queue  85 

The neural event queue refers to the priority queue that maintained a list of all the 86 
interactions between neurons. A spike event and refractory-end event were added to the 87 
priority queue each time a neuron fired. These events would be separated in time according 88 
to the refractory period, and the priority queue added them according to their time stamp.  89 
This ensured that all events that were processed happened sequentially.   90 

 91 

2 .4  Sp i ke  B eha v io r  92 

A neuron had three distinct events to deal with: the spike event when its voltage surpassed 93 
the threshold, a receiving event to update its internal state when a presynaptic neuron fired, 94 
and a refractory period event.  The spike event prompts an update in weights to all synapses 95 
going in to the neuron and out of the neuron.  It also forces the update of neurons connected 96 
to the outgoing synapses of the spiking neuron.  The neuron that is updated has to take the 97 
weighted voltage input (given the delta function of 0 or 1, it was simply the synaptic weight) 98 
and add it to its current voltage.  If the voltage surpassed the threshold, then a new spike 99 
event is added to the event queue along with the refractory event.  During the refractory 100 
period, the neuron would not update its voltage.  The refractory-end event would then reset 101 
the current voltage of the neuron and allow it to accept new input.  102 

 103 

2 .5  GUI  Wa l kthro ug h  104 

The user has to first press a button to create the network, and then press Run Network. The 105 
run network command causes a series of spike events to be added to the event queue that 106 
correspond to the network. An example of a randomly generated network is shown in Figure 107 
2.  These neurons are set to fire spontaneously until the user chooses to end the program. A 108 
second example network is shown in Figure 4A, where an input causes specific spiking 109 
behavior in the top layer of the network. In this version, the user can also run a simple 110 
learning rule to force the synaptic weights to increase or decrease depending on whether the 111 
network has correctly classified the input (for more detail, see section 3.2).  112 



The user can also choose to print a log of spike times and synapse changes. However, the 113 
user does not have the ability to directly interact with the neural network.  114 

 115 

Figure 2.  GUI demonstration of the Java program. A randomly generated graph is output to 116 
the screen once the user presses “Create network” button. The user can change the speed of 117 

event drawing by moving the slider appropriately left or right.  118 

 119 

3 Spike-time-dependent plastici ty and learning behavior  120 

As mentioned in 2.4, each spike event triggers an adaptation of the synaptic weights.  All 121 
synapses keep an updated time stamp of the most recent pre- or post-synaptic spikes. The 122 
weight adjustment is then calculated according to the time difference (∆𝑡 = 𝑝𝑟𝑒 − 𝑝𝑜𝑠𝑡).  123 

 124 

3 .1  STDP beha v io r in  the  s i mu la t io n  125 

The program used an STDP function derived by Song et al. [5].  The equation differentiated 126 
between times where the time difference was negative or positive.  Accordingly, negative 127 
time difference, that is, pre-synaptic neurons firing before post-synaptic neurons led to an 128 



increase in synaptic weight. Positive time difference led to a decrease in synaptic weight. 129 
The equation is reproduced here along with the appropriate parameters used in our 130 
demonstration (Equation 1, Table 1). 131 

Equation 1 was used for excitatory connections, where F was the percent change in the 132 
synaptic weight.  For inhibitory synapses, the same equation was used except with a -1 133 
multiplication attached to both pieces of the equation (i.e., ‘anti-STDP’). 134 

Equation 1 135 

 136 

𝐹(∆𝑡) =  {
𝐴+ exp(∆𝑡

𝜏+
⁄ ),   ∆𝑡 < 0

−𝐴− exp(−∆𝑡
𝜏−

⁄ ),   ∆𝑡 ≥ 0
 

 137 

Table 1: Parameter Values 138 

 139 

A + 0.005 

A - 0.00525 

τ + 20 

τ - 20 

 140 

3 .1 .1  Reco nstruc t io n  o f  ST DP funct io n  141 

By creating a randomly connected neural network (Figure 2), and allowing spontaneous 142 
firing (spike events that randomly occurred at prescribed intervals), we were able to log all 143 
changes to the synaptic weight and the associated difference in spike times.  This allowed us 144 
to show that the implementation of the Equation 1 in the weight update function of the 145 
Synapse class was working (Figure 3). 146 

 147 

 148 

Figure 3.  Recreated STDP function from synaptic weight updates of a 500 neuron network. 149 
Green line for excitatory synaptic weight updates and red for inhibitory synaptic weight 150 

updates. F represents the change in percent of the synaptic weight. 151 

 152 

3 .2  Netw o rk per fo r ma nce  o n  a  ca teg o r iza t io n  tas k  153 

Taking inspiration from a recent memristor simulation [4], we created a simple network 154 
which consisted of a layer of excitatory synapses and a layer of inhibitory synapses which 155 



B 

both converged on an output layer (Figure 4A). 156 

 157 

 158 

Figure 4. Visual categorization task with a two-dimensional binary input. A] Dark input 159 
squares provide excitatory input into the top layer (excitatory connections in green). Blank 160 

input squares provide input into the inhibitory layer (inhibitory connections in red). B] 161 
Classification performance on 100 trial blocks of serial presentation of either a horizontal 162 

bar input or a vertical bar input. The network is unable to categorize the inputs.  163 

 164 

A supervised learning rule updated the weights with every iteration after the STDP learning 165 
rule. Our rule linearly scaled the weight changes with the correct or incorrect trial 166 
classification history of the system, such that the left output neuron should fire if the input 167 
was a horizontal bar, and the right output neuron should fire if the input was a vertical bar. 168 

The classification performance of the system was poor. We suspect that the network 169 
architecture or the learning rule was ineffective for this task and possibly incompatible with 170 
the lower-level STDP weight updating rule that was already present in the network.  171 

 172 

4 Conclusions 173 

The simulation of a neural network with STDP does work. As demonstrated in Figure 3 and 174 
Figure 4, a neural network can be made with synapses that change over time due to spike 175 

A 



timing. This can lead to the ability for the network to “learn” something as in the case of the 176 
classification mentioned in Section 3.2. This learning is not as adaptive as we had hoped, but 177 
it does demonstrate that the synaptic weights changed and that they led to some change in 178 
the network behavior. 179 

The performance of the program is fast with no encumbrance due the neural network’s 180 
multiple events.  However, this would not be true if the program simulated  a fully connected 181 
neural network in which each of the N neurons connected with N other neurons. In such a 182 
case, the number of events to handle would drop to O(N

2
).  Given that many of the neurons 183 

do not have that many connections, and some only a few, it’s better to say that on average 184 

amount of operations is O(NN). In terms of speed, the program is not hindered by multiple 185 
events. Each event is added on to the queue, but the processing of any one event is fast 186 
enough that the rate of processing does not deter.   187 

Overall, this method of network performance could be a viable simulation of networks. 188 
Given its poor performance in classification, the current state of the program would be better 189 
suited for simulating biological systems rather than applying it to neuromorphic machine 190 
learning. 191 

 192 

4 .1  Future  Wo r k  193 

In order to create a more biologically relevant version of this event oriented STDP learning, 194 
the program needs to handle subthreshold values of current input and decay rate. This could 195 
be implemented within the event handling architecture by calculating the decay of the 196 
voltage increase only during updates to the neuron rather than any other time.  In o ther 197 
words, the subthreshold value is only relevant when another neuron spikes and tries to 198 
activate the current neuron. 199 

For a neuromorphic approach, it’s possible that the STDP model requires a different form of 200 
neural networks than previously used. In such a case, a variety of different architectures 201 
could be tried rather than two layer or linear progressions usually seen.  202 

Finally, as shown in Figure 2, we can easily create a randomly generated neural network.  By 203 
employing graph theory, and specifically random geometric graphs, we can create a new 204 
form of neural network.  By using smallest last ordering, we can color the graph in such a 205 
way that the first color set has the most connections, while the last set has the least.  Each 206 
subsequent set will be directly connected to the previous (the previous being the pre neuron 207 
connections in a synapse, and the subsequent as the post neuron connections). Input could be 208 
randomly distributed across the first color set, and classification neurons could be the last 209 
color set of neurons. 210 

The random geometric graph of a neural network could then have a resistance parameter that 211 
determines how much a synaptic weight can change regardless of the timing. This resistance 212 
would increase with each correct classification and decrease with each incorrect one, thus 213 
allowing some form of learning. 214 

Hopefully, this novel way of handling neural events and STDP can lead to new networks that 215 
do not rely on preconceived architecture. 216 

Ac kno w ledg me nts  217 

The authors thank the BENG 260 class of Fall 2014 for enduring our repetitive presentations 218 
of this idea and this project, especially the teaching assistants Chul Kim, Bruno Pedroni, and 219 
Jonathan Garcia. 220 

References  221 

[1] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, 222 
“STDP and STDP variations with memristors for spiking neuromorphic learning systems.,” Front. 223 
Neurosci., vol. 7, no. February, p. 2, Jan. 2013. 224 



[2] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor 225 
device as synapse in neuromorphic systems.,” Nano Lett., vol. 10, no. 4, pp. 1297–301, Apr. 2010. 226 

[3] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H.-S. P. Wong, “Nanoelectronic programmable synapses 227 
based on phase change materials for brain-inspired computing,” Nano Lett., vol. 12, pp. 2179–2186, 228 
2012. 229 

[4] C. Zamarreño-Ramos, L. a Camuñas-Mesa, J. a Pérez-Carrasco, T. Masquelier, T. Serrano-230 
Gotarredona, and B. Linares-Barranco, “On spike-timing-dependent-plasticity, memristive devices, 231 
and building a self-learning visual cortex.,” Front. Neurosci., vol. 5, no. March, p. 26, Jan. 2011. 232 

[5] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning through spike-timing-233 
dependent synaptic plasticity,” Nature, vol. 3, no. 9, pp. 919–926, 2000.  234 


